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Abstract 

This paper describes the Purdue Aerial Robotics UAS for use in the AUVSI SUAS competition. As a 

member committee of Purdue’s IEEE branch, Aerial Robotics has a heavy focus on low level design, with a 

student-built flight controller, printed circuit board, and fixed wing aircraft. The aircraft itself is designed to be 

sturdy and easily controllable, while the flight controller provides robust control of the plane’s flight path. A 

coprocessor on the main control board allows for safety pilot takeover regardless of the status of the 

autopilot, and is controlled directly by the safety pilot rather than via a laptop mission planner. The Ground 

Control Station is also student-developed and has most of the features available to a commercial GCS, 

including point-and-click waypoint generation. The video processing station is an efficient standard object 

identifier run almost entirely from a raspberry pi mounted on the UAV. It has the ability to correctly identify 

shapes, characters, and colors by name along with an object’s relative image location and orientation.  



 

Purdue University - Purdue Aerial Robotics 

2 

 

Contents 

1. Systems Engineering Approach 3 

1.1 Mission Requirement Analysis 3 

1.2 Design Rationale 4 

1.3 Programmatic Risks & Mitigations 5 

2. System Design 6 

2.1 Aircraft 6 

2.2 Autopilot 8 

2.3 Obstacle Avoidance 13 

2.4 Imaging System 13 

2.5 Object Detection, Classification, Localization 13 

2.6 Communications 15 

2.7 Cyber-Security 16 

3. Test and Evaluation Plan 16 

3.1 Developmental Testing 16 

3.2 Individual Component Testing 17 

3.3 Mission Testing Plan 19 

4. Safety, Risks, and Mitigation 19 

4.1 Developmental Risks and Mitigations 19 

4.2 Mission Risks and Mitigations 19 

4.3 Operational Risks and Mitigations 20 

 

 

  



 

Purdue University - Purdue Aerial Robotics 

3 

1. Systems Engineering Approach  

The development of the UAS begins with understanding the subsystem requirements for each competition 
task. Electrical and hardware requirements were developed for the needed hardware and performance 
specifications to satisfy the basic competition tasks such as powering and controlling the motors, reading 
and regulating the voltage across several sensors and circuit boards, and selecting the proper camera to 
view the distinct targets on the ground. The final hardware design is incorporated into the airframe design 
as the required load. The airframe is designed to hold the electronics in place and ensure the safety of 
critical components using a stable frame configuration. The airframe is also designed to have a modular 
interface for easy access to component testing and replacement. The software specifications were listed out 
and developed for each competition task and requirement. Each component in the design, hardware or 
software, was tested, debugged, and verified to meet the specifications determined in the beginning of the 
design. 
 
Three teams were created to develop the main UAS components: electrical, software, and aero-
mechanical. Once the requirements for the overall system were agreed upon, the individual teams would 
develop their subsystems with occasional communication between teams to discuss or integrate 
components. The electrical and software teams would use a purchased airframe to test their subsystem 
components while the aero-mechanical team built and tested the constructed airframe. Final system 
integration and verification would involve repeated flight testing to test key components in the design. 

1.1 Mission Requirement Analysis 

The AUVSI mission contains a variety of tasks of varying complexity and scope. In order to obtain the 
maximum amount of points while minimizing the risks associated with development, a set of technical 
specifications were developed. 
 
The first concern was for achieving the learning objectives set in place by the team during previous years. 
These objectives were set to ensure that the final UAS provided an adequate amount of learning 
opportunities for the students on the team. The objectives included: Using a PCB that was designed by 
team members, fabricating a frame designed by team members, using autopilot software developed by 
team members, and using ground control that was developed by team members. 
 
Because of the nature of developing much of a UAS from scratch, primary concern was given to tasks that 
were accomplishable without having to make major software and hardware changes from the fabricated 
design. Priority was given to tasks that could be attempted while developing an autopilot. 
 

Table 1. Target tasks, the percentage of possible total points, and expected points awarded. 

 

Task Percentage Expected  Legend 

Autonomous Flight 0.12 0.06  Will Perform 

Waypoint Capture 0.03 0.02  Will Attempt 

Waypoint Accuracy 0.15 0.1  Will Not Attempt 

Stationary Obstacle Avoidance 0.1 0.05   

Moving Obstacle Avoidance 0.1 0.05   

Search Area 0.12 0.08   

Off Axis Target 0.02 0   

Interoperability 0.06 0.04   

Air Delivery 0.1 0   
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1.2 Design Rationale 

1.2.1 Electrical and Software Design 

The electrical subsystem was built on the minimum viable product principle. This principle, used in startups 

around the world, focuses on building a working prototype before adding finer features to the design. 

Continuing from the previous year’s work, a list of tasks necessary for autonomous flight was written and a 

critical path was found to ensure that the flight controller would be finished by the middle of March. The 

critical path is defined as shown in Figure 2 below. 

 
 Table 2. Descriptions of design tasks for electronics and software. 
 

Task Description Path Step:: 

Revise Main Board 
Revise main controller board to include serial 
connection for commercial IMU 1 

Solder Main Board Solder components to new board 1 

Receive and interpret IMU sensor 
Data Use I2C interface to receive IMU data 1 

Receive and interpret GPS data Use interface to receive GPS data 1 

Receive and interpret LIDAR data Receive data from LIDAR 1 

Develop Roll Hold Algorithm 
Develop and implement PID system for roll 
controller 2 

Develop Pitch Hold 
Develop and implement PID system for pitch 
controller 2 

Develop yaw rate hold algorithm Fuse pitch and roll algorithm 3 

Implement Lookahead Control Implement lookahead based yaw algorithm 4 

Develop Height Controller Implement height management 4 

Develop Takeoff Algorithm 
Implement state machine logic and takeoff 
algorithm 5 

Develop Landing Algorithm Implement algorithm for the stages of landing 6 

 
The focus in developing the algorithms was as follows: 
● Simplicity: Generally the interfaces between sensors contains only information critical to the 

function of the UAS. This reduces the likelihood of non-critical systems interfering with critical 
systems and reduces the cost of development.  

● Cost of Development: Due to the small size of the active team, projects needed to be as 
inexpensive in time as possible to ensure that they would be accomplished in the expected time 
frame. Project goals and deliverables were set by senior team members with an emphasis on 
ensuring that every member had a substantial but not overwhelming assignment. 

● Safety: The safety of team members was paramount in any design decision. In addition, review 
processes were set up to prevent any damage to physical components and code repositories. All 
finalized features went through a pull request process that required the electrical or software lead to 
sign off as well as some senior members. 

 
1.2.2 Mechanical Design 
The aero-mechanical subteam sought to redesign the previous plane with information gleaned from 
attending the last AUVSI SUAS competition. At the start of the season there was an influx of new members 
who had  to be taught composite manufacturing and CATIA before they could help with the aircraft. As a 
result, much of the initial design work was on the shoulders of returning members. The budget for the 
airframe was to be an inexpensive as possible and use as many of the resources that Purdue has to offer. 
The purpose of the airframe was to be a stable platform for the electrical subsystems, so the focus of the 
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plane was on stability and loading. As a result the plane was designed similar to the Northrop P-61 Black 
Widow with a large wing and two motors to aid with stability. Compared to a single motor top-wing design, 
the two-motor design would add more stability and have the ability to carry a larger payload. The center 
fuselage could also be interchanged for different components more easily than top-wing single straight 
fuselage design. The straight fuselage design would be restricted in the amount of expansions that could be 
made to the internal payload space. An improvement from the last design was the use of load bearing 
carbon fiber spars in the wings and carbon fiber as a lightweight stressed skin rather than a monocoque 
design. This structural spar design would reduce overall weight and provide increased durability. 

1.3 Programmatic Risks & Mitigations 

Table 3: The assessment of risks and their descriptions. 
 

Risk Description Likelihood
* 

Impac
t** 

Risk 
Level 

Mitigation Method 

Development 
Delays 

Features not being 
delivered on time 

8 3 24 Weekly progress meetings were 
held where the delivery date for 
features were discussed and 
struggling members could get 
help. 

Design flaws 
in PCB 

Unreconcilable 
flaws in PCB that 
would require 
fabricating new 
boards 

5 6 30 The PCB was checked by both 
the electrical lead and team 
leader to ensure that all wiring 
was correct and to specification. 

Member 
Inexperience 

Newer members 
may or may not 
come with design or 
programming 
experience 

3 8 24 Club was marketed to 
sophomore/junior level classes in 
order to recruit members with 
some knowledge of theory. 

Safety 
Issues 

Fabrication requires 
the use of power 
tools and potentially 
dangerous 
chemicals.  

2 9 18 All lab safety procedures were 
followed. 

Lack of New 
Students 

A large portion of 
the team is 
graduating this 
year, so new 
students should be 
trained to replace 
them. 

6 6 36 Multiple call outs and active 
recruiting at fairs and clubs. 

Funding Fabricating a plane 
and flight controller 
requires many 
expensive 
materials. 

5 6 30 Team regularly had budgeting 
meetings and the team’s budget 
was tracked through Purdue 
IEEE’s BoilerBooks program. 

*Likelihood is on a scale from 1-10 with a 10 being guaranteed and a 1 being nearly impossible. 
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**Impact is on a scale from 1-10 with a 10 being catastrophic for a team and a 1 being a minor 
inconvenience. 

2. System Design 

2.1 Aircraft 

The airframe model is based on the Northrop P-61 Black Widow and is composed of a main wing assembly, 
a tail assembly, two motor pods, and a central electronics pod. The main wing disassembles into three 
sections and are made with a skin of carbon fiber twill around a foam core with carbon fiber spar 
reinforcement. The tail is made of fiberglass skin with a foam core and 3D printed mounts. Ribs protruding 
from the wing act as mounts for the pods and landing gear. The wing acts as the main lift surface and 
structural component to house the pods and channel wiring to the servos, batteries, and tail. The front 
landing gear is made of stitch weave plates for strength and have two rubber wheels. The main wing joins 
together with telescoping spars and uses the motor pods as clamps to fix the wing sections in place.Carbon 
fiber tubes are clamped to the motor pods and run down to the tail assembly. These set of tubes act as the 
spars linking the tail to the main wing. The tail assembly consists of 3D printed brackets that clamp the two 
vertical stabilizers in place and fix the rear landing gear in place. The horizontal stabilizer has a carbon fiber 
spar that is clamped at both 3D printed brackets. 
 
The motor pods were fabricated with stitch weave carbon fiber layers formed into a rectangular shape. Each 
motor pod houses a motor, ESC, battery, and propeller. Fairings for the pods are made of a hollowed out 
foam shell that is latched to the main body of the pod. These fairings act as aerodynamic bodies to reduce 
drag behind the pods. The electronics pod is made from twill weave carbon fiber formed into a rectangular 
shape similar to the motor pods. The electronics pod has carbon fiber bulkheads and a second deck to hold 
the electronics in place and maintain the rigidity of the pod during flight. Antennas, flight controller boards, 
sensor boards, cameras, and other essential electronics are housed in the central electronics pod. 
 
Structural components such as the wing spar and landing gears were designed with a factor of safety of 2 
using a 3g loading scenario. Other difficult to model components such as the carbon fiber ribs were 
designed with experimentally determined factors and loadings. Figure 1 shows the location of the main 
components and features. 

Figure 1. The location of the main components and features of the Purdue Aerial Robotics UAV. 
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2.1.1 Wing 

To begin the design process, the total aircraft weight was estimated to be 10 kg. This value was based on 
the weight of the previous year’s aircraft (which had a similar configuration), changes in payload weight, and 
expected weight savings from improvements in construction. Using this weight along with the stall speed 
requirement and the characteristics of the selected airfoils (airfoils MH114 and MH115, chosen for their high 
lift-to-drag ratios and gentle stalls) produced an estimated main wing area of approximately 0.7 m2. A 
wingspan of 3 meters was chosen in order to maximize aspect ratio while remaining within structural and 
practical constraints. 
 
XFLR5 analysis was then used to refine the design. The airfoil shape in the central third of the wing was 
kept constant since that portion of the wing acted as a main structural element in the chosen configuration. 
However, taper and washout were still added to the outer thirds of the wing to approximate an elliptical lift 
distribution. Using constant-lift analysis, a cruise speed of 19 m/s was found to maximize the lift-to-drag 
ratio of the wing. The cruise lift-to-drag ratio given by XFLR5 VLM was 22, but the inclusion of loosely 
approximated fuselage drag lowered that value to 14. 
 
The horizontal and vertical tails were sized using tail volume coefficients. The values for these coefficients 
were selected based on the performance and handling of the previous year’s aircraft. The tail was then 
included in the XFLR5 analysis to obtain an incidence angle for the horizontal tail and to verify that static 
stability had been achieved. A simple dynamic stability analysis was also conducted to ensure that the 
aircraft was safe to fly. 
  

Table 4. Airframe properties. 

Performance 

Aircraft Mass 10 kg 

Cruise Speed 19 m/s (36.9 knots) 

Stall Speed 12.22 m/s (23.8 knots) 

Cruise Lift-to-Drag Ratio 14 (estimated) 

  
Table 5. Wing and tail airfoil properties. 

  Main Wing Horizontal Tail Vertical Tail 

Area 0.715 m2 0.11 m2 2 x 0.046 m2 

Span 3 m 0.75 m 0.25 m 

MAC 0.24 m 0.15 0.19 

Aspect Ratio 12.59 5.11 1.36 

Airfoil MH114 (root) 
MH115 (tip) 

NACA 0009 NACA 0009 

Loading 14 kg/ m2 - - 

Taper Ratio 0.75 0 0.68 

Incidence Angle 1 deg. -2 deg 0 deg 

Washout 4 deg. - - 
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Figure 2. Diagram of main wing (above) and horizontal tail (below). 

Figure 3. Local lift curve along the length of the main wing. 
 

2.1.2 Propulsion 

The motors are Dualsky Xmotor EA series brushless outrunners coupled with 15x8E APC propellers, 
powered by Multistar 4S 14.8V 16000mAh lithium-polymer batteries and Turnigy brushless 80 amp ESCs. 
The total required power output for cruise is 130W. This system is capable of providing 1510W. 

2.2 Autopilot 

The autopilot system is built on a custom printed circuit board. It uses an STM32F4 microcontroller to run 
the main custom control stack, as well as an STM32F1, which is used as a co-processor. The requirements 
for autonomous flight as described in the rules drove choices on design for the board. The flight controller 
uses a 9-axis IMU, LIDAR rangefinder, GPS, barometer, and an airspeed sensor to collect information 
about the environment. The sensors were chosen due to ubiquity (how difficult would it be to find a 
replacement), cost in both dollars and development time, and quality. Initially, a separate magnetometer, 
accelerometer, and gyroscope were planned to be used, however concerns about development time lead to 
the adoption of an IMU with built-in sensor fusion software. In addition, the original intent was to have one 
microcontroller board for sensor processing and a second for control for the sake of modularity,however 
development and time constraints lead to the merging of the two into a compact, single board. A system 
diagram is shown in Fig. 4. 
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Figure 4. A system diagram of the autopilot ground control system. 
 

2.2.1 Hardware Design 

A custom printed circuit board was created to minimize the complexity of the wiring in the UAV. This allows 
for much greater freedom in implementing parallel interfaces such as those used by the main and 
coprocessor. Another advantage is the low financial cost of developing a board versus using a prefabricated 
controller like a Pixhawk or Paparazzi controller. The finalized board design as well as a system level block 
diagram of the board can be seen in Fig. 5: 
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Figure 6. The finalized custom circuit board design, and a system level block diagram. 
 
There are two microcontrollers on the board: the main processor and the coprocessor. The main 

processor contains the flight controller, avionics, and ground control communication. The coprocessor acts 
as a “smart multiplexer” that passes either the outputs of the flight controller or the safety override controls 
to the control surfaces and propellers. The decision to separate the multiplexing of the signals into a 
separate processor was made so that if for any reason the main processor were to freeze or reset itself the 
plane could still be recovered. 
 

2.2.2 Co-Processor 

The backup processor behaves similar to a multiple channel parallel multiplexer. It takes in an input from 
both the safety controller and flight controller. Based on the state of the plane as well as inputs from the 
safety controls, the co-processor passes a signal to the control surfaces. In normal operation, the flight 
controller signals are passed through to the control surfaces. However, if a switch is flipped on the safety 
pilot’s controller, then the plane switches to manual control. If the coprocessor stops receiving packets from 
the safety controller, then it will flip to autonomous control for four seconds before placing itself in a 
“recovery position” that puts the plane in a dive. The four second safety period is set because it is the length 
of time it takes for a TARANIS module to power cycle. This prevents the plane from performing an 
unexpected dive due to a power fluctuation or safety pilot error. 
 

2.2.3 Flight Control System 

The flight control system is built on a STM32F4 microcontroller and features a hand-built kernel written in C 
with support for task scheduling. A list and breakdown of the tasks on the primary controller can be seen 
below: 

Table 6. The tasks on the primary controller. 
 

Task Description 

Telemetry Radio Sends and receives communications between GCS and the Flight 
Controller 

Serial Debug Allows for debugging through the main controller’s serial port 

User Button Checks if the user button has been pressed 

Sensors Updates sensor information 

Inter-Micro Communications Sends control signals to the coprocessor 
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Flight PID Control surface algorithm 

Navigation Calculates error values to feed into control algorithm 

 
2.2.4 LIDAR 

The LIDAR module used is a LIDAR Lite v3. This LIDAR module was chosen because of the team’s 
familiarity with the LIDAR from other projects as well as its mechanical reliability. An I2C interface is used to 
communicate between the main board and the LIDAR. The LIDAR module is placed in the fuselage and 
pointed down. This is used for finding the altitude of the plane during takeoff and landing, as GPS and 
barometer altitude data is too coarse for such purposes. The algorithm for determining the plane’s ground 
height is as follows: 

ὈὭίὸ  ὙὩὥὨὭὲὫ  
ȿὼȿ

ὼ ώ ᾀ
 

 Where Dist is the adjusted distance, Reading is the reading from the LIDAR, and x,y, and z is the 
magnitude of the plane’s unit orientation vector in the x,y, and z axis. This allows for the algorithm to 
compensate for when the LIDAR is not pointed directly down, such as during a flare on landing or 
maneuvering flight. 
 

2.2.5 GPS 

The GPS used is a NEO-M8N. The controller communicates to the GPS via the UBX protocol over a serial 
interface. This protocol was chosen over NMEA because communication is more efficient. With NMEA 
strings, if a particular piece of data was needed a particular type of string would have to be requested and 
would slow down communications with irrelevant pieces of data. Historically, using this approach also lead 
to stability issues as NMEA does not specify the message length nor does it have constant length 
messages, making parsing more difficult to perform reliably. The GPS provides the plane’s current location 
as well as information about its height and ground speed that is fused with pressure and airspeed data. 
 

2.2.5 Airspeed 

The airspeed sensor utilizes an MS4525DO differential pressure sensing chip. This sensor has pixhawk 
support so it was chosen for use due to its ubiquity and cost. The airspeed sensor uses a differential 
measurement to find the indicated airspeed of the UAV. The sensor then sends this information to the main 
control via an I2C connection. This information is then sent through a series of transfer functions to correct 
for temperature.  
 

2.2.6 IMU 

The IMU is a Bosch BNO055. The microcontroller communicates to it through an I2C connection. This IMU 
has a magnetometer, gyroscope, and accelerometer, as well as an on-chip ARM microcontroller. The 
onboard microcontroller fuses the sensor data to obtain vehicle orientation, and sends it to the flight 
controller as a quaternion. This quaternion is then converted to an Euler angle for use in the control 
algorithm. The BNO055 was chosen because it is one of the cheaper IMU units to develop for. The primary 
concern, its 100 Hz update rate, is less of an issue with a fixed wing plane than it is with a quadcopter. This 
is because quadcopters require a control output to maintain an orientation, whereas with simple fixed wing 
planes the control outputs are mainly used to change orientation due to disturbances. Thus, for a given 
fixed wing design, the IMU does not need to update nearly as fast as a quadcopter of equivalent complexity 
would require to stay aloft and stable. 
 

2.2.7 Navigation and Control 

The horizontal navigation system utilizes a lookahead control along with linear parameterization of the 
plane’s path to send a roll error term to the control unit. The lookahead control system finds the heading 
that would direct the plane towards a point 5 meters ahead of the point on the line defined by the UAS’s 
cross-track-error. The roll error is then fed to the horizontal control algorithm, the Simulink representation of 
which is shown in Fig. 7. 
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Figure 7. A simulink representation of the horizontal control algorithm. 

 
Each of the PID blocks contain a proportional control. Due to the physical forces on the wings, most 
oscillations are naturally dampened. The saturation block for heading-to-roll prevents the aircraft from rolling 
more than 30 degrees in a turn. The max pitch clamp is set for 45 degrees to prevent the plane from stalling 
itself if given a waypoint that would require climbing at an extreme angle. 
 

2.2.8 Simulations 

The gains for this algorithm were determined by developing a control algorithm in Simulink and testing it 
using a UDP interface with X-Plane 9. The stock model plane aircraft was used for sanity checking new 
developments to ensure that they would result in a stable controller given tuned constants. This prevented 
the team from pursuing non-viable controller designs and significantly sped up development of new control 
algorithms as the UAS did not have to be prepared to test new experimental features. 
 

2.2.9 Ground Control Station 

The Ground Control Station (GCS) is a custom application developed by Purdue Aerial Robotics in tandem 
with the onboard Flight Control System software. The GCS provides mission planning and controls, system 
status display, flight control system tuning, and debugging features. It also serves to tie together the 
multiple systems flying onboard the aircraft. Imagery and target characteristics from the Imaging System are 
paired by the GCS with aircraft telemetry information from the Flight Control System. A typical GCS display 
can be seen in Figure 8 below. 

Figure 8. The Ground Control Station display. 
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2.3 Obstacle Avoidance 

Obstacle avoidance is not yet implemented. However, the system has features to make sure that the UAV 

stays on course and does not leave the mission area. It will not allow a waypoint to be set to an area 

deemed to be off limits. The lookahead algorithm also prevents the plane from deviating from the line 

defined by the previous and current waypoint. This method allows for the team to parameterize the plane’s 

path through the air and ensures that it remains on a path expected regardless of crosswind. 

2.4 Imaging System 

The Raspberry Pi Camera Module version 2 is an 8 megapixel camera with a maximum resolution of 3280 x 
2464 pixels. Since the plane will be flying as low as possible while keeping within the vertical boundaries 
specified by the rules, the average altitude of the plane will be approximately 125 ft above the ground. At 
this height the camera resolution will translate to 1.81 pixels per inch. Thus, given a minimum of 1 inch thick 
lettering, the camera provides enough clarity for the autonomous object detection system to recognize the 
smallest objects it is required to identify. 
 
With an average airspeed of 13 meters per second, the camera needs to take an image at least once every 
2.6 seconds. The Raspberry Pi Camera Module satisfies this condition, having the ability to take full 
resolution pictures at 15 frames per second. In addition to fulfilling the system’s image processing needs, 
this camera interfaces well with the raspberry pi which houses the object detection, classification and 
localization processes, reducing potential issues with compatibility. 

2.5 Object Detection, Classification, Localization 

The UAS detects, classifies, and localizes objects through seven major processes. The system detects 
regions of interest (objects) on the ground, separates the objects into a shape and a character, categorizes 
the color of the shape and character, identifies the shape, finds the character orientation, identifies the 
character, and synthesizes a final output. The OpenCV library is used throughout the project for its wide 
range of highly optimized image processing algorithms. 
 
2.5.1 Region of Interest Detection 
In order to start processing a full-sized image, the unnecessary parts of the image must be filtered out. The 
remaining regions can then be further processed. Since the shapes and characters that must be identified 
in the competition all consist of relatively uniform colors relative to the background, a few simple filters can 
quickly reveal the regions of interest. 
 
The first part of this process is to convert the image from a BGR (Blue, Green, Red) color model to an HLS 
(Hue, Luminosity, Saturation) color model. The saturation channel of this image will now clearly indicate the 
color saturation of the image. This channel is then split into two bitwise images, a high-pass image and a 
low-pass image. The high-pass image is white where the saturation channel was above the mean 
saturation of the image. Conversely, the low-pass image is white where the saturation channel was below 
the mean saturation. This splitting allows for the detection of color uniformity for both high saturation and 
low saturation regions of interest. At this point, small dots are removed from both bitwise images through 
blurring and thresholding the bitwise images. This reduces noise in the images and allows more focus on 
the larger regions of interest. If either of the two bitwise images now contain over 75% white pixels, then 
that image undergoes a bitwise-not operation to shift the focus from the background to the regions of 
interest. Finally holes, black areas in the images completely surrounded by white, are filled, and the high-
pass and low-pass bitwise images are combined. At this point, all regions of the original image with similar 
saturations are white in the combined bitwise image. 
 
Contours, the outlines of individual regions of interest, are found using the OpenCV contour finder on the 
black-and-white bitwise image. Contours with a very small area and contours that are very long are not 
processed further in order to reduce computation time. The remaining regions of interest are cropped out 
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from the original image, masked by the bitwise ROI image and stored, along with its location in the image, 
to be further processed through object separation. 
 
2.5.2 Object Separation 
This process uses the region of interest image, which only contains the potential shape and character 
surrounded in black, for the cases where the shape does not fill the rectangular-cropped image. It then 
outputs two bitwise images: an image which is white only where the character is, and another image which 
is white anywhere the shape (including the character) is. 
 
Firstly, the K-Means Color Clustering algorithm is used on the input image. The number of colors specified 
is 3, accounting for the shape color, character color, and black background. The K-Means algorithm 
produces one bitwise image for each color and its corresponding RGB color. The bitwise image for the 
shape is the image with the most white pixels other than the background color bitwise image. The bitwise 
image for the character is the remaining bitwise image which is neither the background nor the shape. Both 
the shape and character RGB colors are stored as well as the bitwise shape and character images. 
 
2.5.3 Color Categorization 
This section takes the RGB colors from the object separation algorithm and categorizes them into a color 
name. The RGB color is first converted to the HLS color model. The color is categorized as black if the 
luminosity (L) is less than 20%, otherwise it is categorized as white if the luminosity is greater than 80%. If 
neither of those two conditions are the case, then if the saturation is less than 20% the color is categorized 
as gray. If the color is not in grayscale, then the hue is analyzed. 
 
A hue between 340° and 360° or between 0° and 10° is classified as red. A hue between 10° and 40° is 
classified as orange if the luminosity is greater than 40% or brown if the luminosity is less than 40%. A hue 
between 40° and 75° is classified as yellow, and a hue between 75° and 150° is classified as green. A hue 
between 150° and 240° is classified as blue. Between a hue of 240° and 260°, if the difference between the 
luminosity and 40% divided by the difference between the hue and 260° is greater than 1, then the color is 
classified as purple. Otherwise the color is classified as blue. Finally, a hue between 260° and 340° is 
classified as purple. 
 
2.5.4 Shape Identification 
This process starts with the bitwise shape image from the object separation algorithm and outputs the name 
of the shape. First, the OpenCV contour finder is finds the contour of the shape. The curvature of the shape 
is determined by comparing the hough circle of the shape to the shape’s minimum enclosing circle. If the 
hough circle is larger than approximately 70% of the minimum enclosing circle, this is a good indicator that 
the shape is circular in nature. In this case, the hough circle’s area is calculated and the ratio of the hough 
circle area to the area of the contour determines whether the shape is a circle, semicircle, or quarter circle. 
If the shape is not circular, then an approximate polygon is fitted to the contour. The shape is then fitted with 
a minimum area rotated rectangle. If the area of this rectangle is approximately equal to the area of the 
contour, then the shape is rectangular in nature. The side lengths of the approximate polygon are then used 
to determine whether the shape is a square or a rectangle. 
 
If the shape is neither circular nor rectangular, then its shape classification can be determined solely by 
counting the number of sides, given the possible shapes specified in the rules. Four sides indicates a 
trapezoid, five sides indicates a pentagon, six sides indicates a hexagon, seven sides indicates a heptagon, 
eight sides indicates an octagon, ten sides indicates a star, and twelve sides indicates a cross. 
 
2.5.5 Orientation Detection 
Detecting the character orientation from the bitwise character image, created in the object separation 
algorithm, relies heavily on the OpenCV implementation of Principal Component Analysis. Principal 
Component Analysis takes a set of points, in this case the white points on the bitwise character image, and 
uses what is essentially linear regression to find a line of best fit. This line is represented as a vector which 
points in the direction of the larger character dimension. For example, in the lowercase ‘l’ character, the 
larger character dimension is vertical whereas for the ‘w’ character the larger character dimension is 
horizontal. The reported angle of character relative to the image is determined by the larger vector 
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dimension along with characteristics of the characters to account for the differences in larger vector 
dimension and true upward direction. 
 
2.5.6 Character Identification 
The character identification process relies heavily on machine learning, more specifically the k-Nearest 
Neighbors (kNN) algorithm. The character classifier is trained on many fonts so that it can recognize most 
characters, including those which are hand painted or drawn. The training data and testing data are 
prepared in the same way to ensure optimal classification accuracy. 
 
First, the character bitwise image is rotated so that its orientation vector is vertical. Then the OpenCV 
contour finder is used to find the contour of the character, and just the outline of the character is drawn onto 
a new bitwise image. That image is then resized to a 100 by 100 pixel image for uniformity across samples. 
Finally, the newly resized image is fed into the character classifier and, using the kNN algorithm, the closest 
character name to the inputted bitwise image according to the training data is returned. 
 
2.5.7 Synthesis 
Now that all of the necessary information has been gathered, a uniform final output must be synthesized. In 
this step, the object’s information is sent to the ground control station. There the local orientation and 
location of the object on the captured image are combined with the UAV position and orientation. 
Additionally, this final step waits for multiple reinforcing observations of the same object before sending its 
information to the judging station in order to ensure object detection accuracy. 

2.6 Communications 

The UAS has two main communications subsystems: the ground control interface and imaging interface. 
The interfaces are separated to minimize the risk of losing telemetry from the UAV. 
The imaging interface uses a Ubiquiti Bullet HP M5 transceiver on the UAV, and a Ubiquiti Nanostation M5 
on the ground. These transceivers operate using Wi-Fi and transmit imagery to be processed on the 
ground. 
The Ground Control Interface uses two RFD900+ transceivers to communicate between the ground control 
and UAV. The communication interface is MAVLINK. The MAVLINK protocol was chosen because it is a 
commonly used industry standard and allows for the GCS to interact with a Pixhawk with slight modification. 
This lends the system some modularity as the flight controller doesn’t necessarily have to be Purdue made. 
In addition, it cuts the cost in development time and safety of developing an entirely handmade protocol for 
communication. In addition, there is a manual control interface that is used when a safety pilot is needed. 
The RFD900+ transmitters use 900-928 GHz FHSS communication, and the imaging system uses 5.8 GHz 
Wi-Fi. The RC safety control uses 2.4 GHz FHSS communication. 
The UAS sends numerous different types of packets using the MAVLINK interface. A table of the different 
commands and their purposes are shown in Table 8. 
 

Table 7. Commands sent using the MAVLINK interface 
 

Packet Type Purpose 

Ground Control to UAV Packet 

INVALID_MSG Notifies the sender that a previously sent message 
was invalid. 

NAV_SET_MODE Starts and stops the navigation system 

NAV_WAYPOINTS_PUSH Sends a new waypoint to the plane 

NAV_WAYPOINTS_CLEAR Clears all waypoints 
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SET_PID_CONSTANTS Sets control constants for control surfaces 

UAV to Ground Control Packet 

HEARTBEAT Sends flight control state to GCS 

TELEMETRY_ALL Contains telemetry 

MAVRCV_NAV_WAYPOINTS_REQUEST Requests the next waypoint from the GCS 

 

2.7 Cyber-Security 

As encryption was not critical to the functioning of the autopilot, it was not worked on extensively. However, 
the custom nature of the communications software makes it very difficult to interfere with. The flight 
controller uses a custom MAVLink interface. In addition, the cyclical redundancy check (CRC) algorithm is 
not the same algorithm defined by MAVLink spec. This makes spoofing messages difficult, as the CRC has 
to be correct for a message to be parsed. The limited nature of the communications also hampers 
attackers. The only information that can be sent to the plane is adjustments for the PID system or adding 
and removing waypoints. If this were to occur, operators at the ground control station would likely take over 
with manual control. Since the manual control is based on signals received from the safety controller and 
not the flight controller, the plane cannot be abducted without also spoofing the RC control. The RC control 
is as vulnerable as other RC control systems, however since it is a frequency hopping spread spectrum 
interface, it is difficult to jam the controls or spoof messages without finding the frequency sequence used to 
control the manual flight algorithm. 

3. Test and Evaluation Plan 

3.1 Developmental Testing 

The developmental testing plan for the UAV is designed to provide tasks of increasing complexity while 
minimizing risks to personnel or property. The first test conducted after a new flight board PCB is 
constructed are power on tests. These tests ensure that the processors on the board are properly soldered 
and are not defective. If the board does not power on, then a root-cause analysis is conducted and the 
problem is fixed. 
After a sensor driver is developed, the sensor output is sent to a debugging serial and sanity checked. If 
there is any quantitative method of measuring accuracy (e.g. rotating an IMU 90 degrees using a square), 
then that is performed as well. 
When the flight controller was completed, the flight algorithms were tested. First, the attitude hold was 
tested, then the pitch hold, then the navigation system, and then finally the vertical navigation. For each 
subsystem, the plane was tested on the ground without a propeller and held in various orientations to 
ensure that the plane was responding in an expected manner. Then, the plane was taken to an altitude 
where the safety pilot could recover from a dive and tested thoroughly. The data was also logged on the 
flight controller. 
 

1. Ensure sensor operation and comms with GCS telemetry data 
2. Ensure level flight/roll hold works 
3. Ensure pitch hold works 
4. Test waypoint navigation 
5. Integrate vertical controller 
6. Takeoff algorithm 
7. Landing algorithm 
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3.2 Individual Component Testing 

3.2.1 Sensors 

All of the I2C sensors were left operating during long periods of time while their output was checked against 
known reference values. This was to ensure both the stability and functionality of the drivers for the 
sensors. Special tests were performed for the IMU and GPS to ensure that the sensors were properly 
functioning. 
The IMU was checked using a square. The sensor was rotated 90 degrees and the resulting orientation was 
checked against a known angle. The orientation sensor had less than two degrees of inaccuracy in four 90 
degree turns. The IMU was also left alone in the same orientation to check for any drift. There was no 
indication of a constant drift during operation. The IMU was also drop tested to see if sudden changes in 
movement would alter the orientation received. There was a slightly larger orientation drift due to this than 
in normal operation however after further testing it returned to being less than two degrees out of alignment. 
The GPS was checked outside using a google maps comparison. The location that the GPS reported was 
within 5 meters of the expected position. 
 

3.2.2 Control Algorithm 

The control algorithm was first simulated in X-Plane and run for 10 minutes to ensure stability. Then the 
algorithm was tested with different initial conditions to ensure that the system is robust. The algorithm is 
then translated into a C equivalent function and run with known inputs to ensure that the outputs for the 
Simulink and C version are similar. Finally, the algorithm is loaded into the flight controller and tested during 
a controlled test flight. 
 

 
Figure 9. UAV roll over time. 

 
As of writing, the roll hold algorithm has been checked however flooding has closed down the team’s flight 
field so waypoint based flight has not been tested in the air. Fig. 9 shows the roll hold test flight. There are 
short periods of maneuvering flight, but when the roll hold is enabled the plane stays relatively level. Fig 10 
shows a MATLAB simulation of the lookahead algorithm with the blue lines as a closed path between four 
waypoints and the orange line representing the simulated plane. For the simulation, a UAS with a given 
heading and a speed of one graphical unit is placed on a grid with one fixed waypoint along the X-axis and 
two random other waypoints. At each step, the guidance algorithm calculates a new desired heading and 
the plane moves towards that heading at 10 degrees/step. This simulation demonstrates that the control 
algorithm is capable of following a path parametrically determined by two waypoints. 
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Figure 10. MATLAB simulation of the lookahead algorithm. Blue lines show a closed path between 
four waypoints, and orange curve represents the simulated plane. 

 

3.2.3 GCS-Plane Communication 

The plane and GCS communication has been run through stability tests to ensure their proper operation. 
After running the GCS and the plane for over one hour during Purdue’s Computer Science Demo Day. The 
communication has also been range tested, and is able to maintain communications for every distance 
measured, the furthest of which was nearly 0.5 km. 
 

3.2.4 Image Processing 

Figure 11. Determining the shape, character, and color names from an example test image. 

 

Above in Fig. 11 the image processing algorithms correctly identify the two shape objects with their correct 

shape name, character name, and color names. The orange jacket on the ground, however, is classified as 

an “Unknown Object” meaning that it is not a standard object. 
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3.3 Mission Testing Plan 

Purdue Aerial Robotics mission plan is focused on validating the custom autopilot in a competition setting 
while using the image processing system to find targets. The system is to be ran in conditions as close to 
those in the competition as possible given crew availability and flight conditions. The mission plan for every 
competition level test is decided on the basis of maximizing the quantity of tasks that can be completed on a 
given run so as to ascertain the team’s readiness to operate within various configurations and under a 
variety of circumstances. Mock-ups of targets have been made in order to test computer vision systems, 
and autopilot systems are to be tested under varying levels of autonomy ranging from waypoint navigation 
to target location. 
 
Before each flight, a preflight check will be conducted to verify that all systems are functioning normally. A 
flight plan document will be referred to for expected operations and remedies for wing control surfaces, 
power systems, and other electronics both on the plane and on the GCS. A pilot will be accompanied by a 
spotter with binoculars to verify the integrity of the airframe during flights. Other team members will be 
focused on operating the GCS and speaking out changes in status of component systems during flights. 
 
For any unexpected deviation from the mission plan, the team captain has the final say in whether manual 
takeover is warranted. The most senior member of the aero-mechanical and electrical team will provide 
guidance on whether a given malfunction requires emergency landing. 

4. Safety, Risks, and Mitigation 

4.1 Developmental Risks and Mitigations 

The primary safety concern for electrical team was the risk of damage due to electrical shorts or a runaway 
plane. To mitigate this, a 3D printed case for the flight controller was made to prevent it from being exposed 
to the outside environment. The other major development risk is accidental arming of the plane during 
electrical adjustments. For this reason the motors are only powered directly before taxiing. 

4.2 Mission Risks and Mitigations 

Due to the one-time nature of the competition, malfunctions or mishaps may endanger the performance of 
the team. In addition, a failure to mitigate potential risks could endanger being approved after a flight 
readiness review. Thus, a number of potential risks have been assessed and mitigated. 
 

4.2.1 Loss of Autonomous Control 

A loss of autonomous control would entail the flight controller restarting mid-flight or communications 
ceasing during flight. To mitigate this, flight controller models are stability tested before they are taken into 
the air. Changes to control are tested on the ground by tilting the plane by hand before they are flown. 
Capacitors have been added to the power supply to reduce the risk of a brownout. 
 

4.2.2 Loss of Manual Control 

The plane does not respond to manual override or input. Coprocessor has been rigorously stability tested 
and capacitors have been added to the power supply to reduce the risk of a brownout. Failsafe systems will 
send the plane into a downwards spiral in case of extended loss of manual control. 
 

4.2.3 Loss of Telemetry 

Intermittent loss of telemetry due to power fluctuations or damage. The transceiver antennas are designed 
so that no matter the orientation of the plane the transmission pattern will remain strong. 
 

4.2.4 Malfunctioning Control Surface/Motor 

Control surface or motor does not respond or responds inappropriately to input. All control surfaces are 
checked prior to flight.. 
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4.3 Operational Risks and Mitigations  

Due to the energy required to fly, there are numerous scenarios which could cause danger to crew or 
property. While preparing for every eventuality is difficult, there are some common scenarios that could 
cause a risk to Aerial Robotics’ property or members. 
 

4.3.1 Uncontrolled Flight 

One of the concerns that drove several design decisions was the undesirability of uncontrolled flight, 
defined as the UAS not responding to manual override or waypoint navigation. This was the primary reason 
a coprocessor was introduced to the board. The coprocessor has the final say in whether manual or 
autonomous flight is used. The code used on the coprocessor has been rigorously stability tested the 
override is checked before every flight. So long as the coprocessor runs, manual override is available. To 
ensure that the plane can always be taken over, a safety pilot is always ready during any test flight. In 
addition, the radio antennas for the safety control transmitter has a range of more than 5km to ensure that 
signal is not lost. In addition, the plane will put itself into a “recovery mode” if communications is lost for 
more than four seconds with the safety controller. The recovery position will stall the plane and keep it in a 
nosedive where communications was lost so that it doesn’t fly over any populated area or valuable 
equipment. 
 

4.3.2 Flight Controller Lockup 

Another region of concern is the flight controller freezing or losing communication mid-flight. If the controller 
stops responding, then the coprocessor allows for the safety pilot to take over, mitigating the risk of a crash. 
When the plane is given power, the autopilot is run and the expected control surface deflection is checked 
to ensure that the flight controller will respond to disturbances as expected. In addition, the telemetry 
packets are checked on the GCS to ensure that continuous communication is occurring between the GCS 
and UAV. If communication is broken between the GCS and UAV, then the reason is investigated before 
the plane is okayed for flight. 
 

4.3.3 Brownout 

Brownouts are a common issue for electrical systems containing motors. Because of the sensitivity of 
microcontrollers to drops in voltage, a brownout could cause loss of commands for the main flight controller. 
If this occurs, then the safety pilot will take over. To mitigate this, power electronics such as capacitors and 
a dedicated 5 volt regulator for the board have been added to the power system to handle an increased 
instantaneous power load. 
 

4.3.4 Loss of Communications 

A possibility that can occur during flight is the loss of communications between the safety pilot and the 
plane. To mitigate this, transmitters with a range of more than 1km have been used to ensure that 
communications will be solid. Communications are tested during setup to ensure that the UAV is sending 
and receiving information. 
 


